
 Fractal-Structured Karatsuba`s Algorithm
for Binary Field Multiplication: FK

*The authors are working at the Institute of Mathematics in The Academy of Sciences of DPR

Korea.
**Address : Un Jong district Kwahakdong Number 1 Pyongyang DPR Korea

Abstract: In this paper we report a software implementation of binary field multiplication,

based on a new fractal-structured algorithm, which in practice is much faster than the current
methods for the multiplication.[2,6,14,15]

Our software implementation shows that the new method archives surprising speed-up. For
example, our programm on a Pentium Ⅲ-533, without optimization of compiler, by C source code
edited by Microsoft Visual C++ 6.0, takes only 7.04 sµ per multiplication in the field GF(2 431).
We point out that the algorithm too suits for hardware implementation.

1. Survey of results

 Recently, the study on speeding up arithmetic operations of binary field)2(kGF is very

actively proceeded subject to its practical importance.[1-12]
Whereas much research successes with respect to the hardware architecture for high-speed

implementation of binary field multiplication(BM) have been reported, there was no any
remarkable skip after Montgomery`s method[2] in the direction of its software implementation [1-
12]

In this paper we report a software implementation of BM based on a new fractal-structured
algorithm, which in practice is much faster than the current methods for multiplication.[2,6,14,15]
For example, in)2(431GF , this algorithm is about 7 times faster than the Montgomery
multiplication[2] and more than 20 times faster than the improved standard multiplication.[6]
 Our algorithm is based on the Karatsuba`s recursive subdivision(KR) method[1] for polynomial
multiplication(PM).

In the practical implementation of PM, although the KR method implements less number of
multiplications with smaller size in every recursive process, but it needs so much overhead that it
has been recognized to be rather inefficient and disregarded till now.[13]

We have much reduced the overhead by simulating the KR process by the structure of
Sierpinsky triangle, a typical example of fractal, and determining the combinatorial structure with
which the assistant buffers and additions needed in every recursive step are embedded into the
result of the entire process.

2. Basis of the algorithm

In this paper we employ the polynomial basis to represent elements of binary finite field)2(kGF .
Lets denote the definition polynomial of a binary field)2(kGF by)(xn . Then we can consider

the process to compute the product)(mod)()()(xnxbxaxc ⋅= of)2(, kGFba ∈ , dividing into a PM-
)()(xbxa ⋅ and a modulation on the result of the PM by)(xn . As well known, the cost for a

modulation is so cheap that it is negligible in comparison with the cost of a multiplication.
Karatsuba`s method for computing the main object-PM in speeding up BM is as following. To

make the description simple, henceforth we suppose that the length of the binary finite field
)(2 Nnk n ∈= . Since the degrees of)(xa and)(xb is not beyond 1−k , we can write as

)()()(2
2

1 xaxxaxa k += , 2/)(degmax kxai
i

<

)()()(2
2

1 xbxxbxb k += , 2/)(degmax kxbi
i

< and then the PM-)()(xbxa ⋅ with size k is computed by

22
2/

2211212111])()[(baxbababbaaxbaba kk ⋅+⋅+⋅++⋅++⋅=⋅
, being converted into the combination of three PM`s- 11 ba ⋅ , 22 ba ⋅ ,)()(2121 bbaa +⋅+ with size of

at most
2
k . In this paper we call this converting process a Karatsuba`s recursive subdivision

(KR) process. By the KR process, when ∑=
−

=

1

0
)(

k

i

i
i xaxa and ∑=

−

=

1

0
)(

k

i

i
i xbxb ,)()(xbxa ⋅ is obtained

by computing n3 products of type 







∑⋅








∑

==

t

v
i

t

u
i vu

ba
11

with unit size(Henceforth, we call these

products with the least size, basic.) and combining them. What is needed is to
determine or index these basic products and to find the architecture of the scheme they attend.
Linear consideration about it by a purely recursive construction seems to be rather complicate.

Now, we are going to consider it on a plane, arranging the i3 basic products in the KR process on
the cells of a pre-fractal figuration gotten by the i -th action of Sierpinsky`s system of iterative
functions.

To describe our method for arranging them, we first introduce some notations and definitions.

For simplicity of description we denote the basic product 







∑⋅








∑

==

t

v
i

t

u
i vu

ba
11

 by),,(1 tii Λ .

When Z∈r , we define),,(:),,(11 riririi tt ++=⊕ ΛΛ ,),,(:),,(),,(1111 tttt jijijjii ++=⊕ ΛΛΛ and
denote the set consisted of all basic products in the i -th step by iS .

Given two sets A , B composed of basic products, we define operation⊕ as
=⊕ :BA { rxyZrByAxyx ⊕=∈∃∈∈⊕ ,,,| }and ,when Z∈r , }|{: AxrxrA ∈⊕=⊕ .

Simulating the KR process by a Sierpinsky triangle is based on a following fact.
[Lemma 1] For any 1≥i
 }}2{{}2{ 11

1
−−

+ ⊕⊕⊕= i
ii

i
iii SSSSS ΥΥ ,

where the symbol Υ represents disjoint sum.
(abbreviate proof.)

From this lemma, we can construct three mappings:

}2{:

2:

:

1
13

1
12

11

−
+

−
+

+

⊕⊕→

⊕→

→

i
iii

i
ii

ii

SSS

SS

SS

ω

ω

ω

which maps all of)2(,2, 11 −− ⊕⊕⊕ ii xxxx , where iSx∈ , to)2(,2, 11 −− ⊕⊕⊕ ii xxxx ,
respectively.

We can consider the system of these mappings, certainly, correspondingly to the iterative
function system of a Sierpinsky triangle. Namely we can completely place 1+iS on a)1(+i -size
Sierpinsky triangle, by distributing the basic products corresponding to iS in 1+iS on the up left
triangle of size i of the)1(+i -size Sierpinsky triangle, basic products corresponding to 12 −⊕ i

iS on
the up right triangle and ones corresponding to }2{ 1−⊕⊕ i

ii SS on the down small triangle.
The just inverse of this procedure perfectly indexes all basic products.
Now, we should determine to which positions the cell corresponding to a basic product is added

in the block representation of the polynomial of degree)22(1 −+n obtained as the result of n2 -size
multiplication)()(xbxa ⋅ . This corresponds to finding the total multiplication result ba ⋅ from the

arrangement of the basic products, considered in above discussion i. e. of the n -size pre-fractal
cells in a Sierpynsky triangle. To do it, we proceed following process.

We add three ()1−i -size triangles in the i -size Sierpynsky triangle altogether by corresponding
cells and rearrange its result (i.e. }2{2 11 −− ⊕⊕+⊕+ i

ii
i

ii SSSS) in place of }2{ 1−⊕⊕ i
ii SS in the i -

size Sierpinsky triangle.
For any of three ()1−i -size pre-fractal triangles, again this procedure is iterated. … … …
Following theorem shows that our this procedure makes possible to determine the arrange

situation of basic products in the product ba ⋅ .

[Theorem 1] The result of projections of 1-size cells obtained in above procedure to the

bottom side of Sierpinsky triangle is the product ba ⋅ , where by “projection” means “Xor-addition
just at the place”.

 (abbreviate proof.)

In the end, when a finite field)2(kGF is given, if we first construct a pre-Sierpynsky triangle of

size n , composed of indexed basic products and then get the arrangement according to [Theorem 1]
(We call this procedure a finite field)2(kGF multiplication system construction.), then we can
solve the problem for computing product of any two elements ba, in the field, by computing the
basic products and combining them by the constructed operation system.

This does not require any needless addition which is eliminated by Xor-addition or any delay
by intermediate buffers. Having computed previously PM`s of some size v by using the table-
looking-up[2], we can make the computation of basic products more simple.

3. Analysis of FK implementation

FK is designed so that for the settled problem size n select the number t of steps of KR
procedure, by which we should proceed, the table size v for table-looking-up and the word size
w to be optimized. In following lemma the cost for FK implementation is estimated by the
number of bit-Xor operations.
[Lemma 2] [7] The cost of BM in FK is following :

)2(2
4
32

2
3),,(

2
+++⋅






+⋅






= wn

wv
n

w
nvwtQ

tt

The selection of v ,w and t used in FK depends on following fact.
[Lemma 3] [7] The cost of PM in FK is optimized when































































⋅=
w
n

v
nt log,

2
3log

3
4log

logmin

In following table we show the costs of different algorithms for BM and a experimental

comparison of FK to the standard multiplication and Montgomery multiplication. (In FK, when
431=n the table size for reference 8=v , and word size 32=w are selected.)

From the practical viewpoint, we have estimated the costs, supposing that all algorithms refer
8bit multiplication tables [2, 6] and proceeded the experiment in)2(431GF on a Pentium Ⅲ -
computer with Intel CPU, without optimization of compiler, by C source code edited by Microsoft
Visual C++ 6.0.

Algorithm cost

Speed of
implementation in

GF(2431)
(second/a million

time)

Rate of speed-
enhancement

Improved standard
multiplication[6]

SS 1334 2 + 124 20.7

Montgomery multiplication [2] SS +26 42 7

FK 348
9
1 3log ++ SS 6 1

Table 1. Comparison on the costs of FK to Montgomery and improved standard multiplication
and on their implementation speeds

4. Conclusion

 In this paper we have proposed a algorithm FK based on simulating the Karatsuba`s procedure
for polynomial multiplication by Sierpynsky triangle, which implements the multiplication on
binary fields very efficiently.
 Practice has showed that FK is much faster than standard or Montgomery multiplication.
 FK has been recognized to be very effective for the hardware implementation, too.
 Now we are using FK as a special routine for basic operations for elliptic curve cryptosystem
on binary fields.

References

[1] I. F. Blake, G. Seroussi and N. P. Smart, Elliptic Curves in Cryptography, Cambridge, U.K.:

Cambridge Univ. Press , 1999.
[2] Ç. K. Koç and T. Acar, “Montgomery Multiplication in)2(kGF ”, Design, Codes and

Cryptography, 14, 57-69, 1998.
[3] A. HalbutoĞullari and Ç. K. Koç. “Parallel Multiplication in)2(kGF using polynomial

Residue Arithmetic”, Designs, Codes and Cryptography, 20, 155-173, 2000.

[4] M. Aydos, T. Yanik and Ç. K. Koç. “High-Speed Implementation of an ECC-based
Wireless Authentication Protocol on a ARM Microprocessor”, IEE Proc. Commun., 148, 5, 273-
279, 2001.

[5] R. Katti and J. Brennan, “Low Complexity Multiplication in a Finite Field Using Ring
Representation”, IEEE Trans. Computers, 52, 4, 418-427,2003.

 [6] Y. Han, P. C. Leong, P. C. Tan and J. Zhang. “Fast Algorithms for Elliptic Curve
Cryptosystems over Binary Finite Field”, Asiacrypt`98, 75-84, 1999.

[7] S. I. Kim, G. H. Kim and C. S. Sin, “A Generalized Recursive Subdivision Method for
High-Speed Implementation of Binary Field Multiplication”, Science of Information, 1, 1-3, 2005.

[8] W. Geiselmann, “A New Representation of Elements of Finite Fields)2(mGF Yielding
Small Complexity Arithmetic Circuits”, IEEE Trans. Computers, 51, 12, 1460-1461, 2002.

[9] C. H. Kim, S.Oh and J.Lim,, “A New Hardware Architecture for Operations in)2(nGF ”,
IEEE Trans. Computers, 51, 1, 90-91, 2002.

[10] M. Elia, et al., “On the Inherent Space complexity of Fast Parallel Multipliers for)2(nGF ”,
IEEE Trans. Computers, 51, 3, 346-351, 2002.

[11] H. Wu, ”Bit-Parallel Finite Field Multiplier and Square Using Polynomial Basis”, IEEE
Trans. Computers, 51, 7, 750-758, 2002.

[12] A. Satoh and K. Takano, ”A Scalable Dual–Field Elliptic Curve cryptographic processor”,
IEEE Trans. Computers, 52, 4, 449-460, 2003.

[13] R. Crandall and C. Pomerance, Prime Numbers; A Computational Perspective, Springer, p.
434, 2001.

[14] A. Reyhani-Masoleh and M. A. Hasan, “Fast Normal Basis Multiplication Using General
Purpose Processors”, IEEE Trans. Computers, 52, 11, 1379-1390, 2003.

[15] D. Hankerson, J. Lopez and A. Menezes, “Software Implementation of Elliptic Curve
Cryptography over Binary Fields”, CHES2000, 1-24,2000.

[16] A. Reyhani-Masoleh and M. A. Hasan, “Efficient Multiplication Beyond Optimal Normal
Bases”, IEEE Trans. Computers, 52, 4, 428-439,2003.

