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Abstract: In this paper we report a software implementation of binary field multiplication, 

based on a new fractal-structured algorithm, which in practice is much faster than the current 
methods for the multiplication.[2,6,14,15] 

Our software implementation shows that the new method archives surprising speed-up. For 
example, our programm on a Pentium Ⅲ-533, without optimization of compiler, by C source code 
edited by Microsoft Visual C++ 6.0, takes only 7.04 sµ per  multiplication in the field GF(2 431 ). 
We point out that the algorithm too suits for hardware implementation. 

 
1. Survey  of  results 

 
 Recently,  the study on speeding up arithmetic operations of binary field  )2( kGF  is very 

actively proceeded subject to its practical importance.[1-12] 
Whereas much research successes with respect to the hardware architecture for high-speed 

implementation of binary field multiplication(BM) have been reported, there was no any 
remarkable skip after Montgomery`s method[2 ] in the direction of its software implementation [1-
12] 

In this paper we report a software implementation of BM based on a new fractal-structured 
algorithm, which in practice is much faster than the current methods for multiplication.[2,6,14,15] 
For example, in )2( 431GF , this algorithm is about 7 times faster than the Montgomery 
multiplication[2] and more than 20 times faster than the improved standard multiplication.[6]   
    Our algorithm is based on the Karatsuba`s recursive subdivision(KR) method[1] for polynomial 
multiplication(PM). 

In the practical implementation of PM, although the KR method implements less number of 
multiplications with smaller size in every recursive process, but it needs so much overhead that it 
has been recognized to be rather inefficient and disregarded till now.[13] 

We have much reduced the overhead by simulating the KR process by the structure of  
Sierpinsky triangle, a typical example of  fractal, and determining the combinatorial structure with 
which the assistant buffers and additions needed in every recursive step are embedded into the 
result of the entire process. 

 
2. Basis of the algorithm 

 
In this paper we employ the polynomial basis to represent elements of binary finite field )2( kGF . 
Lets denote the definition polynomial of a binary field )2( kGF by )(xn . Then we can consider 

the process to compute the product )(mod)()()( xnxbxaxc ⋅=  of )2(, kGFba ∈ , dividing into a PM-
)()( xbxa ⋅  and a modulation on the result of the PM by )(xn .  As well known, the cost for a 

modulation is so cheap that it is negligible in comparison with the cost of a multiplication.  
Karatsuba`s method for computing the main object-PM in speeding up BM is as following. To 

make the description simple, henceforth we suppose that the length of the binary finite field 
)(2 Nnk n ∈= . Since the degrees of  )(xa  and )(xb  is not beyond 1−k , we can write as 
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with unit size(Henceforth, we call these 

products with the least size, basic.) and combining them.               What is needed is to 
determine or index these basic products and to find the architecture of the scheme they attend. 
Linear consideration about it by a purely recursive construction seems to be rather complicate. 

Now, we are going to consider it  on a plane, arranging  the i3 basic products in the KR process on 
the cells of a pre-fractal figuration  gotten by the i -th  action of  Sierpinsky`s  system of iterative 
functions. 

To describe our method for arranging them, we first introduce some notations and definitions. 

For simplicity of description we denote the basic product  

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 by ),,( 1 tii Λ .  

When Z∈r , we define ),,(:),,( 11 riririi tt ++=⊕ ΛΛ , ),,(:),,(),,( 1111 tttt jijijjii ++=⊕ ΛΛΛ  and 
denote the set consisted of all basic products in the  i -th step by iS . 

Given two sets A , B composed of basic products, we define operation⊕ as 
=⊕ :BA { rxyZrByAxyx ⊕=∈∃∈∈⊕ ,,,|  }and ,when Z∈r , }|{: AxrxrA ∈⊕=⊕ .  

Simulating the KR process by a Sierpinsky triangle is based on a following fact. 
[Lemma 1]  For any 1≥i  
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where the symbol Υ  represents disjoint sum. 
(abbreviate proof.)                     

  
From this lemma, we can construct three mappings: 
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which maps all of  )2(,2, 11 −− ⊕⊕⊕ ii xxxx , where iSx∈ , to )2(,2, 11 −− ⊕⊕⊕ ii xxxx , 
respectively. 

We can consider the system of these mappings, certainly, correspondingly to the iterative 
function system of a Sierpinsky triangle. Namely we can completely  place 1+iS on a )1( +i -size 
Sierpinsky triangle, by distributing the basic products corresponding to iS  in 1+iS  on the up left 
triangle of size i  of the )1( +i -size Sierpinsky triangle, basic products corresponding to 12 −⊕ i

iS  on 
the up right triangle and ones corresponding to }2{ 1−⊕⊕ i

ii SS  on the down small triangle.  
The just inverse of this procedure perfectly indexes all basic products. 
Now, we should determine to which positions the cell corresponding to a basic product is added 

in the block representation of the polynomial of degree )22( 1 −+n  obtained as the result of  n2 -size 
multiplication )()( xbxa ⋅ . This corresponds to finding the total multiplication result ba ⋅  from the 



arrangement of the basic products, considered in above discussion  i. e. of the n -size pre-fractal 
cells in a Sierpynsky triangle. To do it, we proceed following process. 

We add three ( )1−i -size triangles in the i -size Sierpynsky triangle altogether by corresponding 
cells and rearrange its result (i.e. }2{2 11 −− ⊕⊕+⊕+ i

ii
i

ii SSSS ) in place of }2{ 1−⊕⊕ i
ii SS  in the i -

size Sierpinsky triangle. 
For any of three ( )1−i -size pre-fractal triangles, again this procedure is iterated. … … … 
Following theorem shows that our this procedure makes possible to determine the arrange 

situation of basic products in the product ba ⋅ .  
 
[Theorem 1]  The result of projections of 1-size cells obtained in above procedure to the 

bottom side of Sierpinsky triangle is the product ba ⋅ , where by “projection” means  “Xor-addition 
just at the place”. 

 (abbreviate proof.)                     
 

 
In the end, when a finite field )2( kGF  is given, if we first construct a pre-Sierpynsky triangle of 

size n , composed of indexed basic products and then get the arrangement according to [Theorem 1] 
(We call this procedure a finite field )2( kGF  multiplication system construction.), then we can 
solve the problem for computing product of any two elements ba,  in the field, by computing the 
basic products and combining them by the constructed operation system.  

This  does not require any needless addition which is eliminated by Xor-addition or any delay 
by intermediate buffers. Having computed previously PM`s of some size v  by using the table-
looking-up[2], we can make the computation of basic products more simple. 

 
3. Analysis of FK implementation 

 
FK is designed so that for the settled problem size n  select the number t  of steps of KR 
procedure, by which we should proceed, the table size v  for table-looking-up and the word size 
w  to be optimized. In following lemma the cost for FK implementation is estimated by the 
number of bit-Xor operations. 
[Lemma 2] [7] The cost of BM in FK is following :  
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The selection of v ,w and t  used in FK  depends on following fact. 
[Lemma 3] [7] The cost of PM in FK is optimized when   
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In following table we show the costs of  different algorithms for BM and a experimental 

comparison of FK  to the standard multiplication and Montgomery multiplication. (In FK,  when 
431=n the table size for reference 8=v , and word size 32=w are selected.) 

From the practical viewpoint, we have estimated the costs, supposing that all algorithms refer 
8bit multiplication tables [2, 6] and proceeded the experiment in )2( 431GF on a Pentium Ⅲ -
computer with Intel CPU, without optimization of compiler, by C source code edited by Microsoft 
Visual C++ 6.0. 

 
 

Algorithm cost 

Speed of 
implementation in 

GF(2431) 
(second/a million 

time) 

Rate of speed-
enhancement 

Improved standard 
multiplication[6] 

SS 1334 2 +  124 20.7 

Montgomery multiplication [2] SS +26  42 7 

FK 348
9
1 3log ++ SS 6 1 

Table 1. Comparison on the costs of FK to Montgomery and improved standard multiplication 
and on their implementation speeds 

 
 
 

4. Conclusion  
 

     In this paper we have proposed a algorithm FK based on  simulating the Karatsuba`s procedure 
for polynomial multiplication by Sierpynsky triangle, which implements the multiplication on 
binary fields very efficiently. 
     Practice has showed that FK is much faster than standard or Montgomery multiplication. 
    FK has been recognized to be very effective for the hardware implementation, too. 
     Now we are using FK as a special routine for basic operations for elliptic curve cryptosystem 
on binary fields. 
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